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Abstract

A new approach to modeling partially collisional plasmas that provides a smooth transition from the fluid (Coulomb

collision dominated) to the fully kinetic PIC (collisionless) limit is presented. In addition to the usual quantities of mass,

charge, and velocity, each particle carries an isotropic Maxwellian velocity distribution. Higher resolution of velocity

space is achieved by generating more particles using a procedure that preserves the first four velocity moments. This

velocity space fragmentation is essential for capturing non-Maxwellian plasma behavior. The model developed here

allows the efficient simulation of partially collisional plasmas by reducing both the number of particle pairings required

per time step and the number of particles needed to retain non-Maxwellian plasma behavior. The method produces

reasonable results when the time step is large relative to the collision frequencies and works in the limit of one particle

per species per cell. Particle merging can be exploited to control the number of particles in a natural way. The collision

process is fully three-dimensional and conserves energy and momentum exactly. Results from 3v and 1d3v simulations

are presented and compared with previous multi-fluid and fully kinetic PIC simulations.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Particle-in-cell (PIC) codes are an effective tool for modeling collisionless plasmas. For collisional

plasmas, the most widely used approach is to model the plasma as a fluid. The intermediate regime,

sometimes referred to as ‘‘partially collisional’’, is less thoroughly explored.

Takizuka and Abe [1] developed a binary Monte-Carlo collision model for equally weighted simulation
particles that remains the standard approach. The model requires pairing all the particles in a cell randomly

by species (ion–ion, ion–electron, electron–electron) and colliding particle pairs. The variable

d ¼ tanðH=2Þ, where H is the scattering angle in the relative velocity frame, is chosen randomly from a

Gaussian distribution with zero mean and variance given by

hd2i ¼ ZaZbe4nLk
8pe2

0m
2
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Dt; ð1Þ
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where e0 is the vacuum permittivity, nL is the lower of na and nb, and k is the Coulomb logarithm. Although

it is computationally intensive, the model conserves total momentum and energy and describes a collision

integral of the Landau form.

Jones et al. [2] present an algorithm for modeling partially collisional plasmas using a grid-based

‘‘collision field’’ for interspecies collisions. This collision field is incorporated into the Lorentz force

equation when the particle velocities are updated. For intra-species collisions an approach based on the

Langevin equation is used. The collision frequencies employed are those derived by Decoster from a

rigorous analysis of the fluid transport equations derived from the Boltzmann equation for two or more
species. Two collision frequencies are defined, one associated with dynamic friction and the other related

to temperature equilibration. While promising, there are several known problems with the Jones ap-

proach. In the cold beam limit (thermal velocity small compared to the relative drift velocity) the intra-

species algorithm slowing down rate exceeds the Fokker–Planck value with a minimum over-prediction

of 3.8. The interspecies algorithm also yields incorrect results if the distributions are far from Maxwellian

[3].

Miller and Combi [4] extend Takizuma and Abe�s binary collison algorithm to particles with unequal

weights by introducing a weighting factor for each pair-wise interaction. An important feature of their
algorithm is that the particles within a cell are randomly paired only once each time step. Charged particles

within a given spatial grid cell are pair-wise scattered, explicity conserving momentum and implicitly

conserving energy.

In this paper I present a Coulomb collision algorithm for PIC plasma simulation based on the inter-

action of particles carrying isotropic Maxwellian velocity distributions. Higher resolution of velocity space

is achieved by fragmenting the velocity distribution in order to produce more particles. Post-collision

merging can be employed to reduce the number of simulation particles in a natural way. The fragmentation

procedure preserves the first four moments of the original velocity distribution. Higher moments could be
used to further constrain the fragmentation procedure; however, little benefit would result given the very

small error introduced using the procedure described below. Varying the amount of fragmentation allows a

smooth transition between results obtained via a multi-fluid algorithm and those obtained by a fully kinetic

Monte-Carlo collision algorithm.

2. Velocity distribution fragmentation

In addition to the usual quantities of mass, charge, and drift velocity, each simulation particle carries an

isotropic Maxwellian velocity distribution. Each simulation particle has the following velocity distribution:

W0

ð2pÞ3=2v2
th

exp

"
� ð~vv�~uu0Þ2

2v2
th

#
; ð2Þ

where the thermal velocity vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
, the particle drift velocity is ~uu0, and the numerical weight of the

particle is W0.

In order to capture velocity-dependent features of the plasma, the velocity distribution function may be

fragmented in order to produce more simulation particles, as described by Hewett [6]. Although similar, the

following procedure uses the fourth moment instead of the one-sided momentum employed by Hewett.

Consider splitting just the x component of velocity into three pieces. Each piece is a new particle, so in place

of one original particle located at x0 we generate three new particles all located at x0. The weight and

thermal velocity of the new particles are less than those of the original particle. Fig. 3 illustrates the

fragmentation procedure with the original one particle distribution shown by the solid line and the three
new particle distributions plotted with dotted lines.
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The 0th, 2nd, and 4th moments of the velocity distribution are used to define a unique splitting in ve-

locity space. The moment equations yield

w0 ¼ wm þ 2wp; ð3Þ
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with the original particle (quantities denoted by the zero subscript) split into three new particles. We assume

that the middle particle, denoted subscript m, has the same drift velocity as the original particle. The two

probe particles, denoted by subscript p, have drift velocities of equal magnitude but opposite sign. We now

have five unknowns, the weight of the middle and probe particles, wm and wp, the thermal velocities of the

middle and probe particles, vthxm and vthxp, and the probe particle drift velocity uxp, and three equations.

If we assume some relationship between wm and wp we can solve for vthxm and vthxp in terms of vthx0 and
uxp. There are two physically meaningful solutions for wm ¼ wp

vthxm ¼
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and
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For wm ¼ 4wp, we again get two possible solutions:

vthxm ¼
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and
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These equations impose some constraints on the range of probe particle drift velocity uxp. Eq. (6) is less
restrictive than Eq. (7) and requires uxp <

ffiffiffiffiffiffi
3

2
ffiffi
2

p
q

vthx0. Eq. (8) is less restrictive than Eq. (9) and requires

uxp <
ffiffiffi
3

p
vthx0. If wm ¼ 4wp the middle and the two probe particles have the same thermal velocity as shown

by Eq. (8).

The choice of uxp must be made with some care as it is possible to satisfy Eqs. (3)–(5) and significantly

alter the shape of the velocity distribution, as shown in Fig. 1. Very good agreement is achieved with

uxp ¼ 0:5vthx0, as shown in Figs. 2 and 3.
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Fig. 1. Velocity distribution for wm ¼ wp and uxp ¼ vthx0. At v ¼ 0, fm þ fpþ þ fp� ¼ 1:73.

Fig. 2. Velocity distribution for wm ¼ wp and uxp ¼ 0:5vthx0. At v ¼ 0, fm þ fpþ þ fp� ¼ 1:0009.
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In order to reduce the number of variables carried per particle and to facilitate the particle–particle

collision process, we choose to keep all particles isotropic in temperature. Thus we use the wm ¼ 4wp

splitting with the middle and probe particle thermal velocities defined by Eq. (8). The splitting is carried out

in all velocity dimensions, so one original particle becomes 27 new particles after a fully three-dimensional

velocity split is complete. (Note that the middle particle can be split into four particles with weight equal to
wp, producing six particles with equal thermal velocity.) The total velocity distribution can deviate from a

Maxwellian by virtue of the individual particle drift velocities.

3. Collision frequencies

The collision process between two simulation particles proceeds by equilibrating a fraction of the mo-

mentum and temperature carried by each simulation particle according to the relevant frequency for
Coulomb collisions. Consider the collision force between two distinct species, a and b. As reported in [2],

Decoster has performed a rigorous analysis of the fluid transport equations derived from the Boltzmann

equation for two or more species. He assumes that each species consists of a drifting Maxwellian and finds

two distinct collision frequencies. The fluid equations for this situation can be written as

nama
d

dt
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�
�~vvb

�
þ 	 	 	 ; ð10Þ

3

2
na

d

dt
Ta ¼ �mabna

m2
ab

ma
~vva

�
�~vvb

�
	 ~vva

�
�~vvb

�
� me

abna Ta

�
� Tb

�
þ 	 	 	 ; ð11Þ

Fig. 3. Velocity distribution for wm ¼ 4wp and uxp ¼ 0:5vthx0. At v ¼ 0, fm þ fpþ þ fp� ¼ 1:00008.
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where the 	 	 	 corresponds to the rest of the terms in the fluid equations that depend only on species a. The

density, temperature, and mass of species a are na, Ta, and ma. The reduced mass is mab ¼ mamb=ðma þ mbÞ.
The two collision frequencies, mab and me

ab, are given by
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8
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where v2
th 
 2kBðTa=ma þ Tb=mbÞ, Dv 
 j~vva �~vvbj, ln Kab is the Coulomb logarithm, and Zae is the charge of

species a. Jones et al. [2] identify the frequency given by Eq. (12) with dynamic friction, while that given by

Eq. (13) is related to temperature equilibration.

The dynamic friction collision frequency for Dv ¼ 0 is found by taking the limit of Eq. (12) as Dv ! 0,

which yields
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4. Particle–particle interactions

The macro particle–particle interactions are assumed to occur on a cell-by-cell basis. Particles residing

within a cell interact, those residing in different cells do not. Each particle within a given cell is paired

randomly with another particle, which may or may not be of the same species. If there are two species then
each particle interacts with only one other particle in a given time step, unless an odd number of particles

reside in the cell. In this case, the remaining particle is paired with another particle selected randomly from

all the other particles within the cell.

If we have Na ¼ 100 macro particles of species a and Nb ¼ 100 macro particles of species b, then the total

number of collision pairs is N=2 where N ¼ Na þ Nb. Pairing the particles randomly will yield, on average,

Naa ¼ 25 interactions between a particles, Nbb ¼ 25 interactions between b particles, and Nab ¼ 50 inter-

species interactions. The maximum number of aa and bb collision pairs is 50 and, of course, the maximum

number of interspecies collision pairs is N=2 ¼ 100. In order to correctly simulate the dynamic friction and
temperature equilibration processes, we multiply the collision frequencies by the ratio of the maximum

possible number of collision pairs to the average expected number of collision pairs. Thus, in this example

the aa frequencies are multiplied by a factor of 2, as are the bb and ab frequencies.

Miller and Combi [4] give the following expressions for the expected number of collision pairs:

Naa ¼
N
2
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128 D.J. Larson / Journal of Computational Physics 188 (2003) 123–138



where N ¼ Na þ Nb and rp ¼ Na=Nb is the number ratio. (Note that since they are concerned with

standard particle-in-cell modeling, they retain the distinction between ab and ba collisions. I have

combined these in the above expressions because there is no distinction between these collisions in the

algorithm under discussion.) With one modification, I use these results to determine a weighting by

taking the ratio between the maximum number of pairs and the expected number. Let the maximum

possible number of ab collision pairs Pab ¼ minðNa;NbÞ and the expected number of ab collision pairs

Nab ¼ ððN þ 2Þ=2Þð2rp=ð1 þ rpÞ2Þ, where the addition of 2 in the numerator yields the correct weight in

the limit of one particle per species. The collision frequencies are then multiplied by the following
factors:

xaa ¼
ðNa=2Þ
Naa

;

For Nb PNa : xab ¼ Pab

Nab
and xba ¼

Pab

Nabrp

;

For Nb < Na : xab ¼ Pab

Nab=rp

and xba ¼
Pab

Nab
;

xbb ¼ ðNb=2Þ
Nbb

:

ð15Þ

The time loop is

(1) The total species density (na and nb) is determined within the cell.

(2) Particles are paired randomly.

(3) mab and me
ab are determined for each collision pair using the total species density and individual particle

values for all the other quantities required.

(4) Momentum transfer between the two paired macro particles is performed and the change in thermal

energy due to this process is determined.

(5) The macro particle temperatures are equilibrated taking into account the energy determined in step (4).

The momentum transfer is determined by equating the initial and final momentum of the paired simulation

particles. The fraction of particle a that interacts with particle b in a time step is given by fa ¼ xabmabDt and

the fraction of particle b interacting with particle a is fb ¼ xabmabðWa=WbÞDt, where Wa is the individual

particle density. (Note that these fractions are limited to values less than or equal to one.) A new macro
particle velocity is defined through the conservation of momentum

Wamaua þ Wbmbub ¼ ð1 � faÞWamaua þ faWamaunew þ ð1 � fbÞWbmbub þ fbWbmbunew

which yields

unew ¼ faWamaua þ fbWbmbub

faWama þ fbWbmb
: ð16Þ

The change in energy due to dynamic friction, DEdf , is then given by
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1

2
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2
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: ð17Þ

Temperature equilibration is done using a similar algorithm with the fractions given by f e
a ¼ xabme

abDt and

f e
b ¼ xabme

abðWa=WbÞDt. The total amount of internal energy to be equilibrated is given by
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New thermal velocities are then determined
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New thermal velocities and temperatures are determined using these energies, keeping in mind that we

require the particles to maintain isotropic internal temperatures.

As the simulation proceeds, particle pairs may emerge from the collision procedure with the same, to

some specified tolerance, temperatures and velocities. These pairs can easily be merged in order to reduce
the total particle count.

5. Simulation results

In this section I present the results of four homogeneous test cases and the results from a more realistic

problem characteristic of laser-generated colliding plasmas. The ability to smoothly transition from the

fluid limit to the fully kinetic limit is demonstrated. Rambo and Procassini [5] (hereafter referred to as R&P)
used all five test cases to compare the results generated by a code using a multi-fluid algorithm with those

from a fully kinetic PIC code using the Takizuka and Abe [1] collision algorithm. In general they achieved

good agreement, although the PIC results reveal non-Maxwellian features of the plasma evolution, e.g., hot

tails take longer to equilibrate, different parallel and perpendicular temperatures, etc. The algorithm pre-

sented above in Sections 2–4 produces results that agree with the R&P fluid code results if fragmentation is

kept to a minimum and results that agree with their PIC code results if more fragmentation is employed.

Fig. 4. Time history of Ta for the equal density homogeneous temperature equilibration test case.
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5.1. Homogeneous tests

Two temperature equilibration simulations and two beam-slowing simulations were modeled. Each pair

includes a case with equal densities and a case with a large density ratio. These tests neglect spatial gra-

dients, ion–electron collisions, and the electric field; only the ion–ion interaction is considered. For sim-

plicity, in all tests the Coulomb logarithm is set to ln Kab ¼ 10. As expected, using one particle per species

exactly reproduces the multi-fluid results obtained by R&P for each test case. Using velocity fragmentation

to generate more simulation particles produces results similar to R&P�s fully kinetic results.

Fig. 5. Time history of Ta for the homogeneous temperature equilibration test case with unequal densities, na=nb ¼ 0:10.

Fig. 6. Time history of the beam temperature Ta for the beam-slowing test case with equal densities. The dotted and dashed lines were

obtained using two passes through the three-dimensional velocity fragmentation, producing 729 particles per species. Convergence is

obtained as the time step is reduced.
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The first test case consists of two Maxwellian distributions of fully ionized carbon ions, Z ¼ 6 and

m ¼ 12mp. With na ¼ nb ¼ 1:0  1020 cm�3, and initial temperatures Ta ¼ 1:0 keV and Tb ¼ 250 eV, the

time history of the temperature of the a component is shown in Fig. 4. The solid line agrees with the multi-

fluid result of R&P. The dotted line was obtained using one pass through the three-dimensional velocity

fragmentation, producing 27 particles per species. The dashed line is the result obtained after two passes

through the velocity fragmentation, producing 729 particles per species. The open circles are the Monte-

Carlo PIC results of R&P. The plots in Figs. 5–9 use the same convention. The time step for all runs was

Dt ¼ 5:0 fs so the equilibration process is well resolved (1=me
ab ¼ 7:7  10�13 s, 154Dt per relaxation time).

In the second test case the density of the hot component is reduced by a factor of 10, so

na ¼ 1:0  1019 cm�3 and nb ¼ 1:0  1020 cm�3. The time history of the temperature of the a component is

shown in Fig. 5. The time step for all runs was again Dt ¼ 5:0 fs.

The third and fourth test cases involve the slowing of a beam in a background plasma. We again

consider fully stripped carbon ions. The third test case uses equal densities for the beam and background

plasma na ¼ nb ¼ 1:0  1020 cm�3. The beam particles are initialized with beam velocity

ua ¼ 6:55  107 cm=s and temperature Ta ¼ 500 eV. The background plasma is initially at rest with tem-

Fig. 7. Time history of Ta and the beam velocity for the equal density homogeneous beam-slowing test case.
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Fig. 8. Time history of Ta and the beam velocity for the unequal density beam-slowing test case.

Fig. 9. Time history of the parallel and perpendicular beam temperature components for the unequal density beam-slowing test case.

These results were obtained using two passes through the velocity fragmentation, producing 729 particles per species.
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Fig. 10. Snapshots of x� vx phase space from the simulation of interpenetrating aluminum plasmas at t ¼ 500, 700, and 900 ps.
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perature Tb ¼ 500 eV. Fig. 7 shows the time history of the beam velocity and the beam temperature. The

time step for the third and fourth test cases was Dt ¼ 5:0 fs.

The fourth test case incorporates unequal densities into the beam-slowing problem. We set

na ¼ 1:0  1019 cm�3 and keep the other parameters unchanged from test case 3. Fig. 8 shows the time

history of the beam velocity and beam temperature. The plot of parallel and perpendicular temperatures,

Fig. 9, shows the deviation from a drifting Maxwellian obtained using velocity fragmentation.

The results obtained using one particle per species ran with the same time step reported by R&P [3] for

their multi-fluid results, Dt ¼ 5 fs for the temperature equilibration test cases (1 and 2) and Dt ¼ 100 fs for
the beam-slowing test cases (3 and 4). The results produced using velocity fragmentation will all converge if

the time step is reduced, as shown in Fig. 6.

These results demonstrate that non-Maxwellian plasma behavior can be simulated using significantly

fewer particles than would be required in the traditional Takizuka and Abe [1] approach. For instance,

R&P used a total of 44,000 simulation particles to run the fourth test case. The results also illuminate the

inefficiency of representing a velocity distribution using particles with discrete velocities.

Fig. 11. Ion flow velocity and temperature from colliding aluminum plasmas at t ¼ 700 ps. The solid and dashed lines indicate the two

counter-streaming plasma components.
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5.2. Laser-produced colliding plasma simulation

A more realistic test case involves the simulation of plasma ablated from two parallel thick discs. The

problem is restricted to one spatial dimension. A code treating multiple ion species and electrons, coupled

through the electric field and the Coulomb collision interaction has been written to demonstrate the po-

tential of the velocity fragmentation procedure for modeling realistic plasmas. The electrons are assumed to

be a massless fluid with density and velocity given by the quasineutrality and current-free conditions,

ne 

X
i

Zini and neue 

X
i

Ziniui; ð20Þ

respectively. The electric field is given by the electron momentum equation neglecting inertial effects and the

magnetic field,

E ¼ � 1

ene

ope
ox

� me

e

X
i

mei ueð � uiÞ; ð21Þ

Fig. 12. Ion flow velocity and temperature from colliding aluminum plasmas at t ¼ 900 ps.
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where pe ¼ neTe is the electron pressure, as in [5]. The electron temperature is advanced in time by gen-

erating an electron for each ion within a cell and performing the collisional interaction for each electron–ion

pair the same way the ion–ion interactions are calculated.

The problem consists of injecting identical aluminum ðA ¼ 27; Z ¼ 13Þ plasmas on either side of an 800

lm cavity. The injection density is n0
e ¼ 2:0  1021 cm�3, the initial electron and ion temperatures are

Te ¼ 2:0 and Ti ¼ 1:0 keV, and the injection velocity is u0 ¼ 3:08  107 cm=s. The calculation used a time

step of 20 fs and a cell size of Dx ¼ 8:0 lm. One particle was injected from each side every 70 time steps.

Immediately after injection, the incoming particle was split into 27 using the velocity space fragmentation
procedure. At the injection velocity a particle would cross a cell in 1300 time steps. However the particles

are quickly accelerated by the electric field and the average time to cross a cell is approximately 400 time

steps. The simulation ran for 900 ps. Snapshots of the phase space are shown in Fig. 10. The two beams

slow and heat as the interaction proceeds, eventually equilibrating at a central temperature.

The phase space snapshots and plots of the ion drift velocity and temperature, Figs. 11 and 12, compare

favorably with the fully kinetic R&P results. At t ¼ 900 ps, approximately 35,000 particles are active in the

simulation as compared to 90,000 particles in the R&P run. The number of particles can be drastically

reduced – the algorithm recovers the multi-fluid result of R&P if velocity fragmentation is not used,
producing approximately 2000 simulation particles at t ¼ 900 ps. Energy conservation is excellent: the total

energy injected into the simulation is 3:68156200743831  1011 erg and at t ¼ 900 ps the total particle

energy is 3:68156203308601  1011 erg, yielding an error of approximately 7  10�7 percent using double

precision on a Pentium computer.

6. Conclusion

An algorithm for modeling partially collisional plasmas using particles that carry an isotropic thermal

velocity has been presented. The method provides a smooth transition between results obtained via fluid

modeling and those obtained with a fully kinetic PIC model using Monte-Carlo collisions. Results of

homogeneous test problems and a 1d3v simulation of laser-produced colliding plasmas were presented.

These results show that the algorithm retains non-Maxwellian plasma features, as does a fully explicit

Monte-Carlo collision algorithm, but with many fewer simulation particles.

The model developed here allows the efficient simulation of partially collisional plasmas by reducing both

the number of particle pairings required per time step and the number of particles needed to retain non-
Maxwellian plasma behavior. The method produces reasonable results when the time step is large relative to

the collision frequencies and works in the limit of one particle per species per cell. In addition, varying the

amount of velocity space fragmentation smoothly links the collision-dominated and fully kinetic regimes.
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